Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 369, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489113

RESUMO

Protected areas are typically managed as a network of sites exposed to varying anthropogenic conditions. Managing these networks benefits from monitoring of conditions across sites to help prioritize coordinated efforts. Monitoring marine vessel activity and related underwater radiated noise impacts across a network of protected areas, like the U.S. National Marine Sanctuary system, helps managers ensure the quality of habitats used by a wide range of marine species. Here, we use underwater acoustic detections of vessels to quantify different characteristics of vessel noise at 25 locations within eight marine sanctuaries including the Hawaiian Archipelago and the U.S. east and west coasts. Vessel noise metrics, including temporal presence and sound levels, were paired with Automatic Identification System (AIS) vessel tracking data to derive a suite of robust vessel noise indicators for use across the network of marine protected areas. Network-wide comparisons revealed a spectrum of vessel noise conditions that closely matched AIS vessel traffic composition. Shifts in vessel noise were correlated with the decrease in vessel activity early in the COVID-19 pandemic, and vessel speed reduction management initiatives. Improving our understanding of vessel noise conditions in these protected areas can help direct opportunities for reducing vessel noise, such as establishing and maintaining noise-free periods, enhancing port efficiency, engaging with regional and international vessel quieting initiatives, and leveraging co-benefits of management actions for reducing ocean noise.


Assuntos
Pandemias , Navios , Humanos , Monitoramento Ambiental , Ruído , Acústica , Ecossistema
2.
R Soc Open Sci ; 10(12): 231775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094262

RESUMO

The effect of active sonars on marine mammal behaviour is a topic of considerable interest and scientific investigation. Some whales, including the largest species (blue whales, Balaenoptera musculus), can be impacted by mid-frequency (1-10 kHz) military sonars. Here we apply complementary experimental methods to provide the first experimentally controlled measurements of behavioural responses to military sonar and similar stimuli for a related endangered species, fin whales (Balaenoptera physalus). Analytical methods include: (i) principal component analysis paired with generalized additive mixed models; (ii) hidden Markov models; and (iii) structured expert elicitation using response severity metrics. These approaches provide complementary perspectives on the nature of potential changes within and across individuals. Behavioural changes were detected in five of 15 whales during controlled exposure experiments using mid-frequency active sonar or pseudorandom noise of similar frequency, duration and source and received level. No changes were detected during six control (no noise) sequences. Overall responses were more limited in occurrence, severity and duration than in blue whales and were less dependent upon contextual aspects of exposure and more contingent upon exposure received level. Quantifying the factors influencing marine mammal responses to sonar is critical in assessing and mitigating future impacts.

3.
Proc Biol Sci ; 289(1987): 20222058, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448280

RESUMO

Assessing cumulative effects of human activities on ecosystems is required by many jurisdictions, but current science cannot meet regulatory demands. Regulations define them as effect(s) of one human action combined with other actions. Here we argue for an approach that evaluates the cumulative risk of multiple stressors for protected wildlife populations within their ecosystems. Monitoring effects of each stressor is necessary but not sufficient to estimate how multiple stressors interact to affect wildlife populations. Examining the mechanistic pathways, from cellular to ecological, by which stressors affect individuals can help prioritize stressors and interpret how they interact. Our approach uses health indicators to accumulate the effects of stressors on individuals and to estimate changes in vital rates, driving population status. We advocate using methods well-established in human health and integrating them into ecosystem-based management to protect the health of commercially and culturally important wildlife populations and to protect against risk of extinction for threatened species. Our approach will improve abilities to conserve and manage ecosystems but will also demand significant increases in research and monitoring effort. We advocate for increased investment proportional to the economic scale of human activities in the Anthropocene and their pervasive effects on ecology and biodiversity.


Assuntos
Animais Selvagens , Ecossistema , Humanos , Animais , Biodiversidade , Espécies em Perigo de Extinção
4.
Ecol Lett ; 25(11): 2435-2447, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36197736

RESUMO

Trophic transfer of energy through marine food webs is strongly influenced by prey aggregation and its exploitation by predators. Rapid aggregation of some marine fish and crustacean forage species during wind-driven coastal upwelling has recently been discovered, motivating the hypothesis that predators of these forage species track the upwelling circulation in which prey aggregation occurs. We examine this hypothesis in the central California Current Ecosystem using integrative observations of upwelling dynamics, forage species' aggregation, and blue whale movement. Directional origins of blue whale calls repeatedly tracked upwelling plume circulation when wind-driven upwelling intensified and aggregation of forage species was heightened. Our findings illustrate a resource tracking strategy by which blue whales may maximize energy gain amid ephemeral foraging opportunities. These findings have implications for the ecology and conservation of diverse predators that are sustained by forage populations whose behaviour is responsive to episodic environmental dynamics.


Assuntos
Balaenoptera , Animais , Ecossistema , Vento , Oceanos e Mares , Cadeia Alimentar , Comportamento Predatório
5.
Sci Total Environ ; 821: 153322, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074373

RESUMO

Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.


Assuntos
Efeitos Antropogênicos , Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais , Poluição da Água , Baleias
6.
J Acoust Soc Am ; 150(3): 1883, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34598647

RESUMO

Rapid changes in the Arctic from shifting climate and human use patterns are affecting previously reported distributions and movements of marine mammals. The underwater soundscape, a key component of marine mammal habitats, is also changing. This study integrates acoustic data, collected at a site in the northern Bering Sea, with information on sound sources to quantify their occurrence throughout the year and identify deviations in conditions and dominant soundscape components. Predictive models are applied to explain variation in sound levels and to compare the relative contributions of various soundscape components. Levels across all octave bands were influenced most strongly by the variation in abiotic environment across seasons. The presence of commercial ships did not have a discernible effect on sound levels at this location and period of time. The occurrence of sources was compared to a second site, where we documented how higher levels of shipping changed that soundscape. This study demonstrated the value of acoustic monitoring to characterize the dominant acoustic features in a soundscape and the importance of preserving soundscapes based on dominant features rather than level of sound. Using a soundscape approach has relevance for protecting marine mammals and for the food security of Alaska Native communities that depend upon them.


Assuntos
Ruído , Som , Acústica , Animais , Ecossistema , Humanos , Navios
7.
Conserv Physiol ; 9(1): coaa137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505702

RESUMO

Assessing the long-term consequences of sub-lethal anthropogenic disturbance on wildlife populations requires integrating data on fine-scale individual behavior and physiology into spatially and temporally broader, population-level inference. A typical behavioral response to disturbance is the cessation of foraging, which can be translated into a common metric of energetic cost. However, this necessitates detailed empirical information on baseline movements, activity budgets, feeding rates and energy intake, as well as the probability of an individual responding to the disturbance-inducing stressor within different exposure contexts. Here, we integrated data from blue whales (Balaenoptera musculus) experimentally exposed to military active sonar signals with fine-scale measurements of baseline behavior over multiple days or weeks obtained from accelerometry loggers, telemetry tracking and prey sampling. Specifically, we developed daily simulations of movement, feeding behavior and exposure to localized sonar events of increasing duration and intensity and predicted the effects of this disturbance source on the daily energy intake of an individual. Activity budgets and movements were highly variable in space and time and among individuals, resulting in large variability in predicted energetic intake and costs. In half of our simulations, an individual's energy intake was unaffected by the simulated source. However, some individuals lost their entire daily energy intake under brief or weak exposure scenarios. Given this large variation, population-level models will have to assess the consequences of the entire distribution of energetic costs, rather than only consider single summary statistics. The shape of the exposure-response functions also strongly influenced predictions, reinforcing the need for contextually explicit experiments and improved mechanistic understanding of the processes driving behavioral and physiological responses to disturbance. This study presents a robust approach for integrating different types of empirical information to assess the effects of disturbance at spatio-temporal and ecological scales that are relevant to management and conservation.

8.
J Acoust Soc Am ; 148(5): 2973, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33261408

RESUMO

The auditory effects of single- and multiple-shot impulsive noise exposures were evaluated in a bearded seal (Erignathus barbatus). This study replicated and expanded upon recent work with related species [Reichmuth, Ghoul, Sills, Rouse, and Southall (2016). J. Acoust. Soc. Am. 140, 2646-2658]. Behavioral methods were used to measure hearing sensitivity before and immediately following exposure to underwater noise from a seismic air gun. Hearing was evaluated at 100 Hz-close to the maximum energy in the received pulse, and 400 Hz-the frequency with the highest sensation level. When no evidence of a temporary threshold shift (TTS) was found following single shots at 185 dB re 1 µPa2 s unweighted sound exposure level (SEL) and 207 dB re 1 µPa peak-to-peak sound pressure, the number of exposures was gradually increased from one to ten. Transient shifts in hearing thresholds at 400 Hz were apparent following exposure to four to ten consecutive pulses (cumulative SEL 191-195 dB re 1 µPa2 s; 167-171 dB re 1 µPa2 s with frequency weighting for phocid carnivores in water). Along with these auditory data, the effects of seismic exposures on response time, response bias, and behavior were investigated. This study has implications for predicting TTS onset following impulsive noise exposure in seals.


Assuntos
Fadiga Auditiva , Ruído , Estimulação Acústica , Animais , Limiar Auditivo , Audição , Testes Auditivos , Ruído/efeitos adversos , Som
9.
Curr Biol ; 30(23): 4773-4779.e3, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33007246

RESUMO

Linking individual and population scales is fundamental to many concepts in ecology [1], including migration [2, 3]. This behavior is a critical [4] yet increasingly threatened [5] part of the life history of diverse organisms. Research on migratory behavior is constrained by observational scale [2], limiting ecological understanding and precise management of migratory populations in expansive, inaccessible marine ecosystems [6]. This knowledge gap is magnified for dispersed oceanic predators such as endangered blue whales (Balaenoptera musculus). As capital breeders, blue whales migrate vast distances annually between foraging and breeding grounds, and their population fitness depends on synchrony of migration with phenology of prey populations [7, 8]. Despite previous studies of individual-level blue whale vocal behavior via bio-logging [9, 10] and population-level acoustic presence via passive acoustic monitoring [11], detection of the life history transition from foraging to migration remains challenging. Here, we integrate direct high-resolution measures of individual behavior and continuous broad-scale acoustic monitoring of regional song production (Figure 1A) to identify an acoustic signature of the transition from foraging to migration in the Northeast Pacific population. We find that foraging blue whales sing primarily at night, whereas migratory whales sing primarily during the day. The ability to acoustically detect population-level transitions in behavior provides a tool to more comprehensively study the life history, fitness, and plasticity of population behavior in a dispersed, capital breeding population. Real-time detection of this behavioral signal can also inform dynamic management efforts [12] to mitigate anthropogenic threats to this endangered population [13, 14]).


Assuntos
Migração Animal , Balaenoptera/fisiologia , Monitorização de Parâmetros Ecológicos/métodos , Vocalização Animal/fisiologia , Acústica , Animais , Espécies em Perigo de Extinção , Comportamento Alimentar , Masculino , Fotoperíodo , Estações do Ano
10.
Mar Pollut Bull ; 157: 111283, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32475816

RESUMO

We measured spatial and temporal patterns of ambient noise in dynamic, relatively pristine Arctic marine habitats and evaluate the contributions of environmental and human noise sources. Long-term acoustic recorders were deployed around St. Lawrence Island and the Bering Strait region within key feeding and migratory corridors for protected species that are inherently important to Native Alaskan cultures. Over 3000 h of data from 14 recorders at nine sites were obtained from October 2014 to June 2017. Spatial and temporal ambient noise patterns were quantified with percentile statistics in 1/3rd-octave bands (0.02-8 kHz). Ice presence strongly influenced ambient noise by influencing the physical environment and presence of marine mammals. High variability in noise was observed within and between sites, largely as a function of ice presence and associated factors. Acute contributions of biological and anthropogenic sources to local ambient noise are compared to monthly averages, demonstrating how they influence Arctic soundscapes.


Assuntos
Acústica , Ruído , Animais , Regiões Árticas , Humanos , Ilhas , Estações do Ano
11.
J Exp Biol ; 222(Pt 5)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833464

RESUMO

This study measured the degree of behavioral responses in blue whales (Balaenoptera musculus) to controlled noise exposure off the southern California coast. High-resolution movement and passive acoustic data were obtained from non-invasive archival tags (n=42) whereas surface positions were obtained with visual focal follows. Controlled exposure experiments (CEEs) were used to obtain direct behavioral measurements before, during and after simulated and operational military mid-frequency active sonar (MFAS), pseudorandom noise (PRN) and controls (no noise exposure). For a subset of deep-feeding animals (n=21), active acoustic measurements of prey were obtained and used as contextual covariates in response analyses. To investigate potential behavioral changes within individuals as a function of controlled noise exposure conditions, two parallel analyses of time-series data for selected behavioral parameters (e.g. diving, horizontal movement and feeding) were conducted. This included expert scoring of responses according to a specified behavioral severity rating paradigm and quantitative change-point analyses using Mahalanobis distance statistics. Both methods identified clear changes in some conditions. More than 50% of blue whales in deep-feeding states responded during CEEs, whereas no changes in behavior were identified in shallow-feeding blue whales. Overall, responses were generally brief, of low to moderate severity, and highly dependent on exposure context such as behavioral state, source-to-whale horizontal range and prey availability. Response probability did not follow a simple exposure-response model based on received exposure level. These results, in combination with additional analytical methods to investigate different aspects of potential responses within and among individuals, provide a comprehensive evaluation of how free-ranging blue whales responded to mid-frequency military sonar.


Assuntos
Balaenoptera/fisiologia , Mergulho , Comportamento Alimentar/efeitos da radiação , Ruído/efeitos adversos , Acústica , Animais , California
12.
J Acoust Soc Am ; 146(6): 4514, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31893763

RESUMO

Northern elephant seals (Mirounga angustirostris) are massive, land-breeding marine mammals that produce loud, stereotyped calls during annual breeding seasons. To determine vocalization source levels emitted by competing males on a mainland breeding rookery, aerial calls were measured on-axis at 1 m from adult males using three different sound pressure level metrics. Time-averaged (1 min) ambient noise was also measured under variable environmental and social conditions. Results indicate that male northern elephant seals emit high amplitude airborne calls with little variation in call amplitude. Mean source levels ranged from 98 to 114 dB re: 20 µPa [root-mean-square (rms) -fast], 102-116 dB re: 20 µPa (rms-impulse), and 120-131 dB re: 20 µPa (peak) and average standard deviations for all metrics were <2.3 dB. Further, these seal rookeries exhibit high variability in ambient noise (in terms of both spectrum and amplitude) from biotic and environmental sources. Finally, males sampled did not adjust call amplitude to compensate for higher background noise levels and thus did not exhibit a Lombard effect. These findings reinforce the view that the remarkable vocalizations of male northern elephant seals serve as rigid and powerful signals that convey individual identity within noisy breeding colonies rather than as honest indicators of size, status, or motivation.


Assuntos
Comportamento Animal/fisiologia , Cruzamento , Focas Verdadeiras/fisiologia , Vocalização Animal/fisiologia , Acústica , Animais , Masculino , Ruído , Estações do Ano , Fatores Sexuais
13.
R Soc Open Sci ; 5(8): 180241, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225013

RESUMO

Acoustic communication is an important aspect of reproductive, foraging and social behaviours for many marine species. Northeast Pacific blue whales (Balaenoptera musculus) produce three different call types-A, B and D calls. All may be produced as singular calls, but A and B calls also occur in phrases to form songs. To evaluate the behavioural context of singular call and phrase production in blue whales, the acoustic and dive profile data from tags deployed on individuals off southern California were assessed using generalized estimating equations. Only 22% of all deployments contained sounds attributed to the tagged animal. A larger proportion of tagged animals were female (47%) than male (13%), with 40% of unknown sex. Fifty per cent of tags deployed on males contained sounds attributed to the tagged whale, while only a few (5%) deployed on females did. Most calls were produced at shallow depths (less than 30 m). Repetitive phrasing (singing) and production of singular calls were most common during shallow, non-lunging dives, with the latter also common during surface behaviour. Higher sound production rates occurred during autumn than summer and they varied with time-of-day: singular call rates were higher at dawn and dusk, while phrase production rates were highest at dusk and night.

14.
J Exp Biol ; 221(Pt 11)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895580

RESUMO

The risk of predation is often invoked as an important factor influencing the evolution of social organization in cetaceans, but little direct information is available about how these aquatic mammals respond to predators or other perceived threats. We used controlled playback experiments to examine the behavioral responses of short-finned pilot whales (Globicephala macrorhynchus) off Cape Hatteras, NC, USA, and Risso's dolphins (Grampus griseus) off the coast of Southern California, USA, to the calls of a potential predator, mammal-eating killer whales. We transmitted calls of mammal-eating killer whales, conspecifics and baleen whales to 10 pilot whales and four Risso's dolphins equipped with multi-sensor archival acoustic recording tags (DTAGs). Only playbacks of killer whale calls resulted in significant changes in tagged animal heading. The strong responses observed in both species occurred only following exposure to a subset of killer whale calls, all of which contained multiple non-linear properties. This finding suggests that these structural features of killer whale calls convey information about predatory risk to pilot whales and Risso's dolphins. The observed responses differed between the two species; pilot whales approached the sound source while Risso's dolphins fled following playbacks. These divergent responses likely reflect differences in anti-predator response mediated by the social structure of the two species.


Assuntos
Golfinhos/psicologia , Vocalização Animal , Animais , Oceano Atlântico , North Carolina , Comportamento Social , Especificidade da Espécie , Orca/psicologia , Baleias Piloto/psicologia
15.
J Exp Biol ; 221(Pt 4)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491023

RESUMO

Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives.


Assuntos
Mergulho , Golfinhos/fisiologia , Golfinhos/psicologia , Comportamento Predatório , Animais , Atenção , Tomada de Decisões , Ecolocação , Retroalimentação Sensorial , Memória , Percepção
16.
Curr Biol ; 27(22): R1206-R1208, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161554

RESUMO

Lateralized behaviors benefit individuals by increasing task efficiency in foraging and anti-predator behaviors [1-4]. The conventional lateralization paradigm suggests individuals are left or right lateralized, although the direction of this laterality can vary for different tasks (e.g. foraging or predator inspection/avoidance). By fitting tri-axial movement sensors to blue whales (Balaenoptera musculus), and by recording the direction and size of their rolls during lunge feeding events, we show how these animals differ from such a paradigm. The strength and direction of individuals' lateralization were related to where and how the whales were feeding in the water column. Smaller rolls (≤180°) predominantly occurred at depth (>70 m), with whales being more likely to rotate clockwise around their longest axis (right lateralized). Larger rolls (>180°), conversely, occurred more often at shallower depths (<70 m) and were more likely to be performed anti-clockwise (left lateralized). More acrobatic rolls are typically used to target small, less dense krill patches near the water's surface [5,6], and we posit that the specialization of lateralized feeding strategies may enhance foraging efficiency in environments with heterogeneous prey distributions.


Assuntos
Balaenoptera/fisiologia , Balaenoptera/psicologia , Comportamento Alimentar/psicologia , Animais , Fenômenos Biomecânicos , Mergulho , Metabolismo Energético , Euphausiacea , Movimento/fisiologia
17.
Mar Pollut Bull ; 124(1): 9-20, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28751031

RESUMO

The soundscapes of four bays along the Kona Coast of Hawaii Island were monitored between January 2011 and March 2013. Equivalent, unweighted sound pressure levels within standard 1/3rd-octave bands (dB re: 1µPa) were calculated for each recording. Sound levels increased at night and were lowest during the daytime when spinner dolphins use the bays to rest. A tsunami provided an opportunity to monitor the soundscape with little anthropogenic component. We detected a decrease in sound levels and variability in one of the busiest bays. During the daytime in the 3.15kHz 1/3rd octave band, we detected 92 loud outliers from vessels, aquaculture, and military mid-frequency active sonar. During one military mid-frequency active sonar event sound levels reached 45.8dB above median ambient noise levels. The differences found in the bays illustrate the importance of understanding soundscapes to effectively manage noise pollution in marine ecosystems.


Assuntos
Distribuição Animal , Decápodes/fisiologia , Atividades Humanas , Som , Stenella/fisiologia , Vocalização Animal , Acústica , Animais , Baías , Havaí , Militares , Ruído
18.
J Acoust Soc Am ; 141(2): 996, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28253692

RESUMO

Standard audiometric data are often applied to predict how noise influences hearing. With regard to auditory masking, critical ratios-obtained using tonal signals and flat-spectrum maskers-can be combined with noise spectral density levels derived from 1/3-octave band levels to predict signal amplitudes required for detection. However, the efficacy of this conventional model of masking may vary based on features of the signal and noise in question. The ability of resource managers to quantify masking from intermittent seismic noise is relevant due to widespread geophysical exploration. To address this, spotted and ringed seals with previously measured critical ratios were trained to detect low-frequency tonal signals within seismic pulses recorded 1 and 30 km from an operational air gun array. The conventional model of masking accurately predicted the extent of masking only in certain cases. When noise amplitude varied significantly in time, the results suggested that detection was driven by higher signal-to-noise ratios within time windows shorter than the full signal duration. This study evaluates when it is appropriate to use average noise levels and critical ratios to predict auditory masking experienced by marine mammals, and suggests how masking models can be improved by incorporating time-based analyses of signals and noise.

19.
J Acoust Soc Am ; 140(4): 2646, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27794299

RESUMO

Underwater hearing thresholds were measured at 100 Hz in trained spotted (Phoca largha) and ringed seals (Pusa hispida) before and immediately following voluntary exposure to impulsive noise from a seismic air gun. Auditory responses were determined from psychoacoustic data and behavioral responses were scored from video recordings. Four successive exposure conditions of increasing level were tested, with received unweighted sound exposure levels from 165 to 181 dB re 1 µPa2 s and peak-to-peak sound pressures from 190 to 207 dB re 1 µPa. There was no evidence that these single seismic exposures altered hearing-including in the highest exposure condition, which matched previous predictions of temporary threshold shift (TTS) onset. Following training at low exposure levels, relatively mild behavioral responses were observed for higher exposure levels. This demonstrates that individuals can learn to tolerate loud, impulsive sounds, but does not necessarily imply that similar sounds would not elicit stronger behavioral responses in wild seals. The absence of observed TTS confirms that regulatory guidelines (based on M-weighting) for single impulse noise exposures are conservative for seals. However, additional studies using multiple impulses and/or higher exposure levels are needed to quantify exposure conditions that do produce measurable changes in hearing sensitivity.

20.
Proc Biol Sci ; 283(1825): 20152457, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26888030

RESUMO

We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column.


Assuntos
Biomassa , Ecossistema , Cadeia Alimentar , Baleias/fisiologia , Animais , California , Mergulho , Oceano Pacífico , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...